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1. Introduction

In this paper, we show that our theory TM, introduced in [[] to describe a quantum
Hall fluid at Jain fillings, gives a new rational conformal field theory (RCFT) extension
of the Wl(Tgo chiral algebra corresponding to the so called irreducible fully degenerate
representations [ .

A chiral algebra 2 in a CFT is generated by the modes (the Fourier components) of
the conserved currents; the Virasoro algebra [, [f is the chiral algebra corresponding to
the analytic component T'(z) of the stress-energy tensor. A CFT can be characterized
by the corresponding chiral algebra and the set of its irreducible positive energy (highest
weight) representations closed under the fusion algebra. A mathematical introduction to
the subject of vertex or chiral algebras can be found in [[j, §] and references there in.

An extended chiral algebra 2AF?® is itself a chiral algebra obtained by adding to the
original 2 the modes of further conserved currents. The highest weight (h.w.) represen-
tations of AF* are opportune collections of h.w. representations of 2, so that any h.w.
A7 _module is the direct sum of the corresponding collection of h.w. 2A-modules.

Let us remember that RCFTs are CF'T's with a finite set of h.w. representations closed
under the fusion algebra [[J]. The representations of the Virasoro algebra with central charge
¢ > 1 are not RCFTs [[I(J], and so RCFTs with ¢ > 1 correspond always to extensions of the
Virasoro algebra. An RCFT can be defined [[(]]] by reorganizing the set (possibly infinite)



of Virasoro h.w. representations of the CF'T into a finite number of their collections closed
under the fusion algebra, the last ones being the h.w. representations of the RCFT.

Let X be the finite set parametrizing the h.w. representations of the RCF'T, then the
fusion algebra is defined on A(X) := @ ¢ Cx by introducing the product of representa-
tions:

Toy:= Z Ny y.-Cz, (1.1)
zeX
where N, . are called fusion coefficients and C' is the finite dimensional matrix repre-
senting the charge conjugation. The Verlinde formula for an RCFT [, [ expresses the
fusion coefficients N, , . as a function of the elements of the symmetric unitary finite di-
mensional matrix S = [|Sg,yl|, ., representing the action of the modular transformation
S € PSL(2,Z) := SL(2,7Z)/Zy on the characters of the RCFT, or explicitly:

Nm,y,z = Z Sa,msa,ysa,z/sa,ea (1'2)
acX
where e € X parametrizes the unique h.w. representation including the vacuum vector.
Furthermore, the action of the charge conjugation on the h.w. representations is given by
C = HSﬂﬁvyHi,ye +- The fusion algebra (A(X),0) is then a finite dimensional commutative
associative semisimple algebra with unity e.

The Verlinde formula ([.9), in particular, makes possible to characterize an RCFT by
its properties under modular transformations.

Let T be a subgroup of the modular group PSL(2,7Z) containing S, then a CFT whose
characters define a finite dimensional representation of T is an RCFT. In the following, we
denote this kind of RCFT as a T-RCFT to underline the subgroup I of the modular group
PSL(2,7).

These concepts are here applied to define a new RCFT extension of the CFT with chiral
algebra Wl(Tgo and with h.w. representations the irreducible fully degenerate ones [@—[].
From now on, we simply refer to such a CFT as to the fully degenerate W)

1+oc0
known, this CFT is not a rational one. Indeed, there are infinitely many irreducible fully

; as it is well

degenerate representations and all are required to be closed under fusion, as the study of
the corresponding characters and modular transformations shows [fJ].

In the literature there are many classes of RCFT extensions of the fully degenerate
i
WI(T(ZO coincides with the corresponding U (m)-invariant subalgebra. More general RCFT

extensions of the fully degenerate Wl(Tgo

the compact group U(m), where @ is a rank m integral lattice including as a sublattice

. Examples are the affine level 1 chiral algebra 2;(u(m)) or 2i(so(2m)), where

are the lattice chiral algebras 2(Q) associated with

the rank m — 1 su(m) lattice (see [}, section 5]). The m-component free bosons u(Dk,, ,
(described in section [ of this paper) can be seen as a class of examples of these RCFT
extensions.

The orbifold construction is a way to define new RCFTs starting from a given RCFT
by quotienting it with a generic discrete symmetry group G. More precisely, let G be a
discrete group of automorphisms of the chiral algebra 2 of the original RCFT, then the

corresponding orbifold chiral algebra A% := 2 /G is the subalgebra of A defined as the



invariant part of 2 under G. The G-orbifold RCFT with chiral algebra 2% has a finite
set of irreducible representations that splits in two sectors. The untwisted sector of A
has irreducible representations that coincide with those of the original chiral algebra 2A
or with opportune restrictions of them. The twisted sector of A€ has instead irreducible
representations that cannot be expressed in terms of those of 2.

In [H], the orbifold construction is shown to be a tool to obtain a class of RCFT ex-
tensions of the fully degenerate Wl(igo The lattice chiral algebras' 2(Z™) is one of the

above RCF'T extensions of the fully degenerate Wl(Tgo with a unique irreducible represen-
tation [JJ. To such an RCFT? is applied the orbifold construction with respect to G, a
discrete group of inner automorphisms® of A(Z™), obtaining a class of RCFT extensions

of the fully degenerate WI(T) .

In this paper, we show that our theory TM [fl], characterized as the cyclic permutation
orbifold [[3, [4] with respect to the outer automorphisms [[L5, [L§] Z,, of the chiral algebra
A(u(1)x,, ), is a Ig-RCFT extension of the fully degenerate Wl(Tgo

The results given here contain, in particular, a generalization to any prime m of the
m = 2 special case presented in [[l. For m not a prime number the results still hold and

will be the subject of a forthcoming paper.

The paper is organized as follows. In section [, we review the CFT with chiral algebra
WI(T(ZO and the decomposition of the affine level 1 su/(\m)1 characters in terms of those
of the W, chiral algebra [[4]. In section [}, we derive the main identities among the
n-function of Dedekind, the characters of the W,, chiral algebra and the characters of
the affine level 1 Wl, evaluated at the so called principal element of type p of B.
Kostant [[§. In section [§, we recall the definition of the I'y-RCFT m-component free bosons
@Km,p [[9—-PF. The corresponding chiral algebra ﬂ(@Km’p) is identified together with
the finite set of h.w. representations (modules). The corresponding characters and modular
transformations are given. In section [, we derive our theory TM by making the explicit
Z., cyclic permutation orbifold construction of the m-component free bosons zXl\)Km’p
In particular, a finite set of irreducible (h.w.) representations (modules) of the orbifold
chiral algebra Ay = AZm (Zme,p) is found. By explicitly performing the modular
transformations of the corresponding characters, we prove that they provide a unitary
finite dimensional representation of the modular subgroup I'y, i.e. TM is a ['y-RCFT. In
section fl, we show, using the identities derived in section fj, that TM gives a ['y-RCFT
extension of the fully degenerate wm)

1400
Finally, we report in two appendices some useful definitions and results. In appendix [A], we

In section [f], some final remarks are contained.

recall the definition of the Ty subgroup of the modular group PSL(2,7Z). In appendix [B,
we recall the definition of the I'y-RCFT u(1), B3], where ¢ is odd. The corresponding

—

chiral algebra (u(1),) is identified together with the finite set of the h.w. representations
(modules). The corresponding characters and their modular transformations are also given.

"Where Z™ is the rank m orthonormal lattice.
2See [E, Theorem 5.2].
3In particular, G is a finite subgroup of U(m).



2. The W7, chiral algebra

Witeo is the unique nontrivial central extension [R3, 4] of the Lie algebra ws [BH] of the
area-preserving diffeomorphisms on the circle; its representation theory was developed in
B-H]. W1iis has an infinite number of generators W, with v a non negative integer and

m € 7, satisfying the commutation relations:

B D) ! n+v
(W W] = = o W e Ezu))! <n_y_1>5y,y,5n+n,vo, (2.1)

v+ —1— 2l
W,

The generators W) of Wi define the modes of a Heisenberg algebra u( ), for v =0, and

where dots denote a finite number of similar terms involving the operators

those of a Virasoro algebra, for v = 1, with central charge ¢. The unitary representations
of W14 have positive integer central charge ¢ = m € N and their h.w. representations are
defined by the h.w. vectors |r), where r: = (r1,...,7,) is an m-dimensional vector with
real values. The h.w. vector |r) is defined by:

Wy |r) =w,(r)|r)  for v >0, Wyl r)y=0 for v>0 m >0, (2.2)

with eigenvalues [H:

(V—l)!l/!y_l .
wu(r)zwz<]><3+1>g '(Ti'i‘y_j_l)' (2'3)

J=0

Thus, in particular, |r) is a h.w. vector for the Virasoro algebra defined by L,, := WL, m €
Z, with conformal dimension hy := wi(r) = (1/2)Y.7,r2. The unitary irreducible
(h.w.) module W™ of Wl(Tgo with central charge ¢ = m is built by the action of
the generators W} on the h.w. vector |r) quotient the submodule generated by the

unique singular vector of degree m + 1 [B]. The unitary irreducible h.w. representations

of Wl(Tgo are given in terms of those of the m-component free bosons zﬁl\)@n. They
can be of two types: generic or degenerate. The h.w. representations defined by |r) are
generic if r = (rq,...,7y,) satisfies the conditions r, — r, ¢ Z, Ya # b € {1,...,m},
while they are degenerate if r, — r, € Z, for some a # b. Finally, the h.w. repre-
sentations are fully degenerate if r = (rq,...,7,,) satisfies the conditions r, — r, € Z,
Va #be{l,...,m}.

The irreducible fully degenerate representations of W( ) are isomorphic [7] to those
of u(1 ) @ Wi, where W, is the algebra with central charge ¢ = (m—1) defined by the limit

a — oo of the Zamolodchikov-Fateev-Lukyanov algebra with ¢ = (m—1) <1 — TZEZ::?) 6.

The irreducible fully degenerate representations of WI(T(ZO are classified with h.w. r satis-
fying the additional condition that its elements are arranged in a decreasing order, that is
r eP(™ where P 1= {r eR"™ : 1y > - >rp, ra —1p €Z, Ya#be {1,...,m}}. Ttis
worth noticing that for any h.w. r eP(™_ defining an irreducible fully degenerate represen-



tation of Wl(fgo, a h.w. A of su(m) is defined in the following way:

A= Z )\iAi7 )‘i =TTl € Z+, (2.4)

where A; are the fundamental weights of su(m) and \; are the Dynkin labels.

The W,, chiral algebra can be also defined by a coset construction of the kind W[g; /g;
k] based on the Casimir operators of a finite algebra g (see [[L7] for details). In particular,
the coset that defines W, is W[s?(?n) w/su(m); k = 1] and involves the finite algebra su(m);
thus, the central charge of the CFT with chiral algebra W, has the same value of that of
the level 1 affine sml, ie. cw,, = Coy, =™ 1.

In the following, we will make use of characters for clarifying the relations among the
representations of the chiral algebras under study. Indeed, to any h.w. representation of
a chiral algebra we can associate a character which accounts for the main properties of
the representation. The explicit form of the character depends on the nature of the chiral
algebra. In the particular case of a Lie algebra or of a Kac-Moody algebra (see chapter 9
of [27]) we can define the formal character, corresponding to a given h.w. A, as the formal
function:

X& = Z multy (A)e? ™ (2.5)
ANeQp

where 2 is the set of the weights in the h.w. A representation of the algebra g, mults(A)
is the multiplicity? of the weight A’ and ¢ denotes a formal exponential satisfying:

elel2 = 1112 and el'(¢) = 19, (2.6)

where (,) is the bilinear form (Killing form) on g and ¢ is an arbitrary element of the dual
Cartan subalgebra. The action of the exponential ¢! on & allows to compute Xi(& ), the so
called specialization of the character at &. In the case of Lie algebras, the group character
definition, given in the representation theory of Lie groups (see [2g]), is simply related to
that of the formal character (as explained in [RY, section 13.4.1]), so from now on we will
refer to it as the character associated to a h.w. representation of the algebra. For more
general chiral algebras the definition of character can be given analogously. In this paper,
in particular, we will define and study the characters for a class of chiral algebras which are
cyclic orbifold of lattice chiral algebras (see [f], §] for a general definition of the characters
of lattice chiral algebras).

Let us now consider the characters of the coset W,,; by definition, the h.w. representa-
tions of W), are defined by decomposing those of Wl in terms of those of su(m). Thus,
the characters of the coset W,, are the branching functions constructed by decomposing

AThat is, multa(A’) is the dimension of the eigenspace V[(\, with eigenvalue A’ in the weight space

Va= Y. v

AN EeQp

decomposition of the h.w. module Vj:



o —

the characters of su(m), in terms of those of su(m):

G = Y 0 o), (2.7)

A€P+ﬁQl

where € is the finite part of Ql, the set of the affine weights in the integrable h.w. repre-
sentation of su(m)1 corresponding to the fundamental weight A;, and P, is the set of the
dominant weights of the Lie algebra su(m). Therefore, the character of W, corresponding
to the h.w. A is defined by XVX’” (1) := b% (1) and explicitly given by:

X (1) = m,l [T @ =g, (2.8)

CVEA+

where ¢ := >, p:= <ZaeA+ a) /2 is the Weyl vector, A is the set of the positive roots
of su(m), A = A; + v with A; a fundamental weight of su(m) and v € @, the set of roots

of su(m). While, according to the Weyl character formula, the character corresponding to
the h.w. A of su(m) is:

Sy ()20
ZweW e(w)e%ri(wp,{) ’

where w is an element in the Weyl group W of su(m), e(w) = (—=1)4*) is the signature of
the Weyl reflection w and I(w) € N is the length of w.
For z — 0 the character Xiu(m) (& = zp) goes to the dimension of the h.w. A represen-

X (€) =

(2.9)

tation of the finite algebra su(m), dgy(m)(A). Thus, the characters of sml, specialized
to the weight é = (z,o + TK0> ‘ _, can be written in the form:
G ) = G e =zl = Y e (AN (T). (210)
AePL N

The above analysis on the h.w. A representations of W,, and the characterization given
of the irreducible fully degenerate h.w. r eP(™) of WI(T(ZO imply the following expression
for the corresponding character:

e27ri{7—ﬁ( A rl) +wrtdet(R)}

X () = Ty (2707 (R0 ) 2miT) 3 ()

)

(2.11)
where tT :=(1,...,1), Ly is the zero mode of the Virasoro algebra, .J is the conformal

(m)
Wa n(7)

charge defined by J := rtdet(R), and R is the m x m symmetric positive definite com-
pactification matrix of the system of m free boson fields (see section | for details).

The h.w. A of su(m) in (B:11) is defined by (R-4) in terms of the h.w. r €P(™ and the
identity (R.11]) follows as a consequence of the following relation between the conformal
dimensions h, and hp:

m 2
1
he = 5 (Z m) + ha, (2.12)

i=1



where:

2
1 ) AP 1 1 &
hr.zaizlri and hA.:T=§; Ti—Ejlej . (2.13)

3. The main identities

In this section, we derive the main results of the paper that allow us to show that our
theory TM gives a new ['g-RCFT extension of the fully degenerate WI(T) .

—

Proposition 1. Let X%u(m)l (&]7) be the character of the affine level 1 su(m), corresponding
l

to the fundamental representation Kl, then it has the following series expansion in terms
of the characters of Wy, :

—

su(m 1% -
Xxl( h (5 - E'T> - 6Z’OAZD: e(wp) (1), (3.1)
€Dm

where Dy, == {A € Py : Jlwpy € W — wp(A+ p) — p € mQ}, e(wp) is the signature of the
Weyl reflection wp, Py is the set of the dominant weights and Q) is the root lattice of the
finite algebra su(m).

Let n(t) be the Dedekind function, then it holds:

P

su(m) P - n
X3, e= E‘T) = %0 n(mr) "

(3.2)

To prove this Proposition we make use of some important results of B. Kostant already
given in [[§. Here, we just recall those results which turn out to be useful for us and we
restate them according to our notations.

Kostant’s Proposition 1. Let g be a simple Lie algebra. Then, either
(1) Yw e W — w(A +p) — p & hQ, or

(2) 3wy € W — wp(A+ p) — p € hQ, where h is the Cozeter number of g.

This Proposition, in particular, makes clear the definition given above of the set D,,, if
one recalls that m is the Coxeter number of su(m). Kostant defines the so called principal
element of type p and here we give a definition of it in a way to be independent of the
normalization of the Killing form.

Definition 1. Let g be a simply laced Lie algebra and x, be defined as an element of g
such that (xp, ;) == 1/h, i € {1,...,h — 1}, where a; are the simple roots, (,) is the
Killing form and h is the Coxeter number of g.

Then, every element of g conjugate, with respect to the Weyl group, to the element x,
is called principal of typep.



The normalization of the Killing form that we chose is (a;, ;) = 2,3 € {1,...,h— 1},
in this case (p, ;) =1 and thus x, = p/h.

Kostant’s Proposition 2. For any A € P, and & principal of type p it results x3(§) €
{=1,0,1}, where X is the character of the representation A. In particular, it holds:

B 0 for A ¢ Dy,
XAE) = { e(wp) for A€ Dy’ (3:3)

where Dy, :={A € Py : 3wy € W — wpa(A+p) — p € hQ}.

In the case of su(m), then =, = p/m is a principal element of type p and the following

identities hold:
=2 = . 3.4
Xa <5 m) {e(wA)VAGDm (34)

We give now a first characterization of the weights of D,, in terms of the finite part of the
affine weights of the fundamental representations.

The finite part® Q; of the affine weight systems Ql, 1 €{0,...,m— 1}, can be charac-
terized by the so called m-ality, or congruence class, of the weights.

Lemma 1. The m-ality of the weight A = [A1,..., \n—1], where \; are the Dynkin labels,
is defined as k(A) = % 221_11 iA; modl. Then, all the weights in £ have the same m-ality

I/m,l€{0,...,m—1}.

Proof. We have to prove that k(A) = [/m VA € €. This is of course true for the finite
fundamental weights A;, that is k(A;) = [/m. Now, the generic weight A € €; has the form
A=A+ Z:i;l n;o;, and by using «; = 2A; — (1 — 62‘,1)Ai,1 — (1 — 6i,m71)Ai+1 we get
k(o) = (H1)5i7m,1 = 0 modl. Thus, the equalities k(A) = k(A;) = I/m hold. O

m

Lemma 2. All the weights of D,, have zero m-ality, that is: D,, C Py N .

Proof. If A € Dy, then wp(A + p) — p € mQ, by definition for each element of the Weyl
group, Aln; € Z: wa(A+p)=A+p+ z;”:_ll n;o;. The condition A € D,, so implies that
Ag; € mZ : A+ Z’;{;l nioy = er;l gici, that is 3lp; € Z : A = Zi";lpiai. Thus, A has
zero m-ality and A € Py N . O

Thus, we can give the following proof of the identity (B.1]) — The identity (B.1)) is an
immediate consequence of Lemma B, (B.4) and (.7) evaluated at & = p/m. O

We are now ready to prove the identity (B.9). Let us start by giving the following
Lemma.

5The m-ality of an affine weight A= [Aos A1y .. s Am—1] is defined as the m-ality of its finite part
A =[X1,..., Am=1]. So, lemma m implies that the affine weight system €2; has the same m-ality of the finite
part , ie. I/m.



Lemma 3. The ratio n(7)/n(mt) has the equivalent expression in terms of O-functions:

n(r) 1 D 0s (w—ah)

= . 3.5
n(mr)  n(r)m1 O3 (mw — ™ |mr) (3:5)
Proof. The identity (B.5) is equivalent to the following one:
0y (mw — 2 imr) _ 1 03 (v~ ) 55)
n(mr) n(r) '

Using the definition of n(7) and the expansion of ©3 (w|7) in terms of infinite products:

7)=¢P [0 =q"), Os(w|r) =g ) [T —ya" (A -y "), (3.7)
n=1
where ¢ := 2™ and y := 2™, we obtain:
@3 (mw — m_‘H|m7’) _ /24 > m+1 ( 1/2) m+1 ~1/2
:qm 1__ 2qumn 1-(—-1 2qum(n /2)
o TI0 - )1 (1) )
(3.8)
and
m O3 <w - i|7’) ,
_ —m/24 (1—e % ¢ 1/2 _e—%jy—lqn—l/Q . 3.9
-5 =TI 0 e

The identity in (B.6) is then an immediate consequence of the following one:

ﬁ (1 + ae*%ﬂj - (1 + (—1)’”T“am) , (3.10)
j=1

due to the properties of the roots of the unity. O
Furthermore, by using the series expansion of O3 (w|7), it holds:

I1e (w—%) = > gERmmILesin, (3.11)
7j=1 m (nl,...,nm)GZm

If we define ny := (., n;) /m and u; := nj — nx, then:
ny =nr+1/m, (3.12)

with [ € {0,...,m — 1}, np € Z and z;nzl uj = 0. The last condition makes possible to
interpret A = Y, ue; as a weight of su(m), where €1, ..., €y is an orthonormal basis
of the Euclidean space R™ [B(, B, 9. In terms of Dynkin labels A can be rewritten as
A= Z;”;ll AjAj, where \j = u; —ujy1 = nj —njy, j € {1,...,m — 1}, are integer



numbers. Furthermore, (3°1" i);) /m = np —ny, +1/m and thus the m-ality of the weight
A coincides with [/m in (B.19) and A € Q;. The sums in (B.11]) can then be rewritten as:

= E n? = —nX + - g u? —nX + ha, (3.13)
where:
hp = = |A]" = = E < 3.14

and

Em: <w - %) nj =nx (mw - m—“) - Zyuj (3.15)

j=1
By recalling that, in terms of the fundamental weights of su(m), p has the expansion
p= Zm ! A; one gets in the €1, ..., €, basis:

Uk 1
P <ﬁ —i> &, (3.16)
, 2
and so:
1 1 & /m+1 . 1 &
E(A’p):gz<7_3> uj=——3 juj. (3.17)

Using the above identities, (B.11) can be rewritten as:

m m—1
v )2 2i m+1 l .
_ = — 2 (np+-L p2im(mw—"2) (nr+0) ha 2im(A
[T0s(w-ir)=3"¢ |3 o > dte
v=1 =0 nr€Z AeQ
(3.18)
Furthermore, by expressing this last factor in terms of ©-functions with characteristics:
a o mir(uta)?+2mi(w+b) (uta)
O, | (wl):= %e (3.19)

and substituting the result in (B.5), it holds:

m—1
G (7 T 3 et ) (3.20)
=0 AeQ
where:
(m) 0 0
G (1) =0 () | (mwlmT) [ © | _(iqy | (mw|mT) . (3.21)
2 2

V. Kac and D. Peterson [B1] have shown that for any level 1 simply laced affine Lie algebra
Xa(tl), all the non-zero string functions coincide with 1/n(7)* and thus the characters of the
fundamental representations of su(m), read as:

su(m 1 ha p2im(A€) 29
eI = A; g"re : (3.22)
1

,10,



and we finally get:
m—1
m su(m 1%
= > GG (6= L) (3.23)
=0

—

But from (B.1]), we know that Xsu(m (£ = £]7) is non-zero only for [ = 0 and thus (B.9)
immediately follows, so ending thie proof of Proposition [I. O

The results given in Proposition [l| are essential in order to define an extension of the
chiral algebra W,,.

We have shown that D,, is contained in €, however )y has infinite weights and so
it is important to look for a simpler definition of D,,. In the following, we will give a
remarkable simplification characterizing D,, in terms of a finite subset of 2.

Let P, + be the subset of Py whose weights have Dynkin labels in {0,...,m — 1}, so
P, + is a finite subset of Py and Py = P, + + mPy. That is, any weight A€ P, has the
form A’ + mA” where A’ € P,, + and A” € Py, A’ being the module m part of A.

Proposition 2. The identities of Proposition [| can be written in the following more ex-
plicit forms:
For m odd:

W <£ - _| ) - = D e(wn) (). (3.24)

A'€Py  ANEPy +NDy,

For m = 2n even:

8“(’”’1 (¢=Lir )—5“)

n— 1)\//
Z Z ( 1) i=0 21+16(’U}A/)X A’+mA”( )
AN'ePy Ne€Pp, +NDm
(3.25)

where N/ are the Dynkin labels of A”.

To prove Proposition f| we start proving the Lemma.

Lemma 4. The following equivalent characterization of Dy, = {A € P : A = A +
mA" with A" € Py, + N D, and A" € Py} holds. Furthermore, for every weight A € Py
of the form A" +mA”, where A’ € P, + and A" € Py, it results:

su(m <§ _ _) — s“(m <§ — —) for m odd (3.26)

and

Xiu(m) <§ = ﬁ) (-1 )Zn ) Mgt Xsu(m) <§ = %) for m = 2n even. (3.27)

m

Proof. Kostant’s Proposition 2 implies that D,, is the subset of the dominant weights P,
that give a non-zero value of Xsu(m) (§ = £). Thus, the above characterization of Dy, follows

by the proof of the identities (B.26) and (B.27). Indeed, they imply that Xf\u(m) (E=2£)#0
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if and only if Xf\lf(m) (§ = £) #0, that is A(=A"+mA") € Dy, if and only if A" € P, . N D,y
and A” € P,. Whenever the character of su(m) is evaluated at £ oc p, it is possible to use
the following expression:

sin = (h +1)

su(m P SiIl ( A—|—p
XA( )(SZE): H

sin 7 (a,p)

a>0 i=1  h=0
(3.28)
Writing A=A’ + mA” and using the expansion of sin(a + b), it follows:
m) (5 _ ﬁ) = (—1)alms A7)y sum) <5 _ _> (3.29)
m
Where a(m, A") = TS T N 4 -+ AL, in terms of the Dynkin labels [M,. ..,
' 1] of A”. Such exponent can be rewritten as a(m,A”) = " n(m, i)\, where

m
n(m,i) :=i(m — ).

Thus, for m odd all the n(m,i) are even integers, while for m even n(m,i) are even
for i even and odd for i odd. So, (B:29) implies (B.26) and (B.27), ending the proof of
Lemma . U

It is worth pointing out that P, 4 N D,, is a finite subset of the dominant weights with
zero m-ality, which implies the announced simplification in the characterization of D,,.

Proof. of Proposition [§ The proof is now an immediate consequence of Proposition [ and

Lemma []. Indeed, by substituting identities (B.26) and (B.27) in (B.1]), the equations (B.24))
and (B.25) of Proposition f follow. O
Finally, we use the identity (B.9) to derive the last result of this section.

Corollary 1. The following identity holds:

n(r)  _ m) su(m), su(m), (o _ P
Ty = () 3 STNG ™ (6= D). (3:30)
1=0
where SZ%(m)l, a,b € {0,...,m — 1}, are the elements of the unitary matriz Sml that

o —

define the action of the modular transformation S : 7 — —1/7 on the characters of su(m), .
The explicit expression is [29):

S%ﬁ)l = il4+] <det ,élsU(m))_l/2 (14+m) =D N e(w)em2milwlhete)lotn)/(meD) - (3 31)
weW

where |Ay| is the number of positive roots, A5 s the Cartan matriz, W is the Weyl
group, A, and Ay, are the fundamental weights of su(m) and

Fiutr) = g ) (3.32

twist m

Proof. The Corollary is a direct consequence of (B.J) and of the well known action of the
modular transformation S : 7 — —1/7 on the characters of su(m), and on n(7). By

definition of S and by using (B.2), it results: S(n(7)/n(m7)) := n(—1/7)/n(—m/7) and
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S(n(r)/n(mT)) = X%Z(mh@ = p/m| — 1/7), respectively. Expanding the right hand side

of these last two equalities, we obtain our result (B.30)) with the following expression for

Ft(zZ?st(T): .
F, () = —etrithrio)m?. (3:33)
m
Finally, by using the Freudental-de Vries strange formula |p|*=(m/12) dim su(m)=m(m?2 —
1)/12, Ft(ﬂlt(T) takes the expression (B.32). O

4. The Ty-RCFT u(l)y

In order to make more clear the derivation of our theory TM, we introduce here the I'y-

—

RCFT u(l)g,, -

—® —

As it is well known, the m-component free boson u(1) m, with chiral algebra 20 (u(1))®™
(the tensor product of m Heisenberg algebras), is not a rational CFT. Let K,, , be the
m X m symmetric matrix with integer entries:

Km,p = 1pxm + 2pCmea (41)

where p € Z and C,,«, is the m x m matrix, all elements of which are equal to 1. An
—=®
RCFT can be defined now imposing on (1) " the following compactification condition
fixed by K, [0, [J]:
@(2e*™ ze7?™) = (2, 2) + 2Ry, ph, (4.2)
where h” := (hy,...,hy,) € Z™ is the winding vector, o(z, 2) is defined by ¢(z,2)T =

(W (=, 2),
9™ (2, 2)), with ¢ (z, 2) free boson fields, and Ry, , is the mxm matrix defined byS:

Rﬁ,pRm,p =K p, (4-3)

that explicitly reads:

1
Rm,P = 1pxm + E < 2pm 41 — 1) Cin xm- (44)

The compactification condition ([£3) for diagonal h = ht defines the following ones:
e (2™ ze72™) = (2, 7) + 27rh, (4.5)

for the free boson fields w(i)(z,é) with h € Z, where the square of the compactification
radius r is an odd number, r? = 2pm + 1.

(1)

The compactification condition has the effect to influence the zero-modes ag := (ag ',

(m)

..., ay ) of the free boson fields only. In particular, to obtain well defined vertex operators,

°R,., is the positive root of K, p, which is well defined because K, , is a symmetric and positive
definite mxm matrix.
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under the compactification condition, the possible eigenvalues of ag are restricted to the
following values ap = pTR;%p with p € Z™ and

- 1 1

—

Xm i
So, the h.w. vectors of the compactified u(1)  are |0zp>::®i@1 ‘al([,)>, where ozp:(ozl([,l),
N ozl(om)) and ‘ag)> are the h.w. vectors of the i* Heisenberg algebra {a/(j)}kez, corre-

sponding to the eigenvalue (ap)(i) of ag), ie.

ag)> = ag) ag)>, ag,i)

ag) ag)> =0 for r>0. (4.7)

The irreducible module corresponding to ‘ozp> is denoted by Hp := @, Hg), where ng,i)
is the irreducible module of {a/(j)}kez, defined by:

HY = [q@m . qOm

—ng —nq

a§f>> with np, > 0, my > 0, ¢ > 0} (4.8)

(4)

ap > and the module HS) are a h.w. vector and the corresponding

Moreover, the vector

irreducible module with respect to the ¢ =1 Virasoro algebra {Lﬁf )}nEZ generated by the
Heisenberg algebra {a;(;)}kez (see equation (B.3)), i.e.

o) = 1)

The zero mode of m independent ¢ = 1 Virasoro algebras {Lg )}nEZ is defined by:

0 o) with 1) = 2%, L0

ag)> =0 for n>0. (4.9)

m
Lo=Y LY, (4.10)
i=1
and so we have:
Lo o) = hyp |, (4.11)
with
m .
he =Y hy) = apal /2. (4.12)
i=1
The corresponding character is:
TTHp <q(L0_2_n}1)e27Tin) — (1)mth627riw\/mapt’ (413)
n (T

where J := apt det(R,, ) is the conformal charge and by definition Hy, is the eigenspace
of J corresponding to the eigenvalue /2mp + Iapt.

As in the case of the single free boson CFT (see appendix [B]), we define the chiral
algebra Ql(u/(l\)Kmp) extension of Ql(zXl\))@’m by adding to it the modes of the two chiral
currents:

P:I:

5, (2) = e Rnadle) (4.14)
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where ¢ (2)7 := (¢ (2),...,6™ (2)) is the chiral part of ¢(z,z)T. By definition:

Tk, (2 ® [ | (4.15)
where:
DE= i/2m (1) (5
PE2)mp+1)(Z) = FVIMPHISIG) (4.16)

are locally anticommuting Fermi fields, with half integer (2mp+1)/2 conformal dimensions.
Let {ki}icq1,. 0 € Z+ and {ui,j}je{l di}, ie{1,...ap € Z™ Dbe the eigenvalues and a
basis in Z™ of the corresponding eigenvectors of K, Kii; ; = k;u; j, respectively. Then:

a d;
KZ" =<{peZ" :p= Z Zcmum with ¢; ; € Z (4.17)
i=1 j=1
and the quotient Zg := Z™/KZ™ is
a d;
Zx =peEZ™:p= Z Zci,jui,j with Cij € {0, N 1} . (4.18)
i=1 j—1

The matrix K,,, has two distinct eigenvalues: ki = 2mp + 1, with degeneracy 1 and
eigenvector t, and ko = 1, with degeneracy m — 1 and m — 1 independent eigenvectors
{u; }j ef,m—1} € 7™, simply characterized by the orthogonality condition

ult =0, (4.19)

so that:
7x,,, = {p € Z" : p =bt with b € {0,...,2mp}}. (4.20)

Now, det(R?mp) = 2mp + 1 and the chiral algebra Ql(u/(l\)Km’p) has h.w. vectors |ap) with

conformal weights

~ mb?

By = ——
b 2@mp + 1)

corresponding to apy = thR;I}p with bt € Zk,, ,- The related irreducible modules are:

(4.21)

Hb = @ Hbt+Km’pq, (422)
qezZ™

with b € {0,...,2mp}, and so the characters are:
Xo(w|T) == Try, (q(LO’ﬁ)eQ”W ) : (4.23)

More explicitly, they are given by:
1

w\|T 4.24
(ol = L (1.21)
" Z ezm{g[ (06T R pta Rmp)(thR;l}erqTRm,p)T]+wdet(Rm,p)(thR,;}erqTRm,p)t}.

q€eZ™
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The chiral algebra Ql(zXl\)Km ,) defines a T'p-RCFT because its characters x,(w|7) define a
(2mp + 1)-dimensional representation of the modular subgroup I'y:
The transformation 72:

To(w|r + 2) = 2 2= 5015, (w|r), (4.25)

where <ﬁb -—m/ 24) is the modular anomaly of a h.w. representation of conformal dimension

iLb in a ['y-RCF'T with central charge ¢ = m.
The transformation S:

2pm
w 1 1 2immbb’
v [ =] = = - Spm+T 4.26
w(21-7) = 13 ). (1.26)

Such modular transformations can be simply derived from those of the ©-functions with
characteristics. We denote this I'g-RCFT simply with u(1)g

el

The fact that the matrix K, ; is symmetric implies that u(1)g , Is invariant under the
exchange of a pair of free bosons. More precisely, the exchange of a pair of free bosons is an
outer automorphism on the chiral algebra 2A(u(1)g p). Let g be defined as the element that

—

acts on u(1)g ) bringing the field in position i into that in position i + 1, ¢ € {1,...,m},
with the periodicity condition m+1 = 1. Then, g is an outer automorphism of Ql(u/(l\)Km p)
We observe that ¢™ = 1 and g" # 1 for h € {1,...,m — 1}, so g generates the discrete
symmetry group Z,, of outer automorphisms of Ql(u(l)Kmp) The cyclic permutation
orbifold in the next section is made with respect to this discrete symmetry group Z,, of

—

u(lk,, -

Proposition 3. The h.w. representations of U/(T)Kmp can be expressed in terms of those

of the tensor product U’/(T)m(2mp+1) & su(m),, as the following character decompositions
show:

m—1

m(2pm+1

(w|r) = Z X; K(2 ngil)HQLb(w\T), (4.27)
=0

with b € {0,...,2mp} and KISQ)(w\T) the characters of the T'9-RCFT @q, q odd, given
by:

b
K wlr) = =0 | ¢ | (qular). (1.28)
Proof. Tt results:

Ubq = Q4K q = V/2pm + 1 [me% - <% + q)} t7 +u’, (4.29)
where I/m +q := <Z?:11 qi) /m,1€{0,....m—1},u:=q—t <ZZ 1 ql) /m and q7 :=
(q1,---,qm) € Z™. We observe that, denoting oy q : (O‘I()lo)p . ,agz)), it follows:

of) — o) =q;—q; €Z Vi,je{l,...,m}. (4.30)
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—

Such a result is at the origin of the decomposition of the modules Hy, of u(1)y , in terms
of the tensor product of those of the level 1 affine Lie algebra sml and of the free boson
u(l)m(me+1)'

Indeed, to each a3 corresponds the weight A := 22_11 Ail\; of su(m), where A; are
the fundamental weights of su(m) and A; are the Dynkin labels, A\; := ¢; — gi+1 € Z. The
m-ality of the weight A coincides by definition with {/m. We observe that when q spans
Z™ then ¢ spans Z, | spans {0,...,m — 1} and for any fixed I, A spans ;.

By using the orthogonality condition ([L19) and the definition ([£.29), we obtain:

b+ (2 1)1
apqt =m/2mp +1 <m + 2pm + 1) —i—q); (4.31)

m (2pm + 1)

so, the conformal dimension Ay ¢ := ozb7qoz;£q /2 has the following expression in terms of b, [,

q and A:

m (2pm + 1) <mb + (2pm +1
hyq =

)1 ?
h 4.32
2 m (2pm + 1) ta) (4.32)

where hy is the conformal dimension (B.14) with u; := ¢; — (Z;n:l qj) /m. The characters

—

of u(l)k,  can then be written in the form:

3
L

(i) = Y | ooy S

—1
n(r)m™ i

N
Il
o

| m(2pm—+1) [ mb+(2pm+1)L 2 mb+(2pm+1)1
627”{7’ 2 ( m(2p€n+1) +q> +wm(2mp+1)< m(2p€n+1) +q>

D

q€Z

re (4.33)

—

which, by (B:23) and by the definition of the characters Ka(tm@pmﬂ))(wh') of u(1),,2pm-41)
coincides with (|£.27). O

—

Proposition 4. u(l)Kmp can be seen as a I'g-RCFT extension of su(m) ®W1(TC)>O, as it

follows by the decomposition of its characters:

qu(mv‘H

where r(b,q) := o q, Zmt) = {q L™ q1 > - > qm } and A is defined for q €Z™ as:

m—1 Nii=¢ — Q1 €Z Vied{l,.... m—1
A= NAy with: o €1 b s
P l/m+q:= (Zizl qi> /m

and A; the fundamental weights of su(m).

Proof. The fully degenerate h.w. r, that define the h.w. module ng) of Wl(igo, corresponds
to the following value of the h.w. r(b, q) := X q with the only restriction q €Z™1). Indeed,
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by (E29) r(b,q) belongs to PU™ if and only if q €Z(™%) and by the definition (B-11]) and
the relations (§.32) and (4.31)) the corresponding character is:

| m(2pm41) [ mbt+(2pm+1)1 2 mb+(2pm+1)1
62%@{7— = ( m(2pl;n+1) +q) +wm(2mp+1)<7m(2p€n+l) +q)

T wlT) = X3 (7)

X . (4.36
(b.a) e (4.36)
where I, ¢ and A are defined by ([£.35).
The identity (27) can be rewritten by using (R.10) as:
m—1
~ m(2pm+1
Blr) =3 D dan ) (R (OEGeED) (wlr)), (437)
1=0 AeP.NSY
and so, by ([£.3d) and by the definition of the characters KmEmED) (417 of u/(T)m@pmH),

(B.37) coincides with ({.34). O
The above identity makes clear the meaning of the claim that u(1)g , defines a I'g-
RCFT extension of the chiral algebra given by the tensor product of the fully degenerate

representations of WI(T(ZO times the representations of su(m) specialized to £ = (zp)|,_,-

In particular, the module Hj of u(l)Km ) corresponding to the h.w. ay := bt, has the
following expansion:

qu(m,+)

where Fyy () (A) is the h.w. module of su(m) corresponding to the h.w. A.

—

5. The Zy-orbifold of u(1l)g,

In this section, we just give the essential elements to identify our TM. That is, we construct

—

explicitly the Z,, cyclic permutation orbifold of the m-component free bosons u(l)Km’p.
In particular, a finite set of irreducible characters (modules) of the orbifold chiral algebra
Ay = ALm (zXl\)Km’p) is found. Their modular transformations have been performed,
proving that they give a unitary finite dimensional representation of the modular subgroup
Ty, i.e. TM is a I'y-RCFT.

We refer to our previous paper [[l] for the construction of the vertex operators (the
chiral primary fields of TM) by the m-reduction procedure [BJ]. Furthermore, here we
consider the case m > 2 and prime, the particular m = 2 case being developed in [[I].

The orbifold construction makes possible to define new RCFTs starting from a given
RCFT by quotienting it with a generic discrete symmetry group G. The discrete group
G can be characterized more precisely as a group of automorphisms of the chiral algebra
2 of the original RCFT. The orbifold chiral algebra A% := /G is then defined as the
subalgebra of 2 invariant under G. The study of the orbifolds was first introduced in
the context of string theory in order to approximate CFT on Calabi-Yau manifolds [BJ]
and further developed in [B4-Bf]. A first detailed study of the general properties of the
orbifolds was done in [[L1]], while in [§ a complete study of orbifolds with respect to discrete
groups of inner automorphisms was given.
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Here, we are interested in the class of the cyclic permutation orbifolds. It was first
introduced in [ld, [[4] on RCFTs characterized as the tensor product of m copies of a
given RCFT. The subject was further developed in [[[5, [[6, B7— [, and it was also studied
by using the approach of the m-reduction technique in B3, (2, . A more complete
classification has been recently presented in [[j], where the orbifold construction is applied
in the more general framework of the lattice vertex algebras (which are not simply tensor
products of RCFTs). In particular, the twisted vertex operator algebras and their modules
are studied.

Let us recall the main steps of the procedure to build the finite set of irreducible
representations of a Z,, cyclic permutation orbifold. The orbifold chiral algebra %" has
a finite set of irreducible representations that splits in two sectors, untwisted and twisted
one. The irreducible representations of the untwisted sector are generated by restricting
those of the original chiral algebra 2 to their invariant part with respect to the elements
of Z,,. The characters of the untwisted irreducible 2%m-representations are not anymore
closed under modular transformations. Then, the irreducible 2%m-representations of the
twisted sector are generated by applying to the untwisted irreducible 2%m-characters the
modular transformations”, 775 € PSL(2,Z) with j € {0,...,m — 1}.

It is worth pointing out that our theory TM defines a family of lattice orbifolds which
can be included in the general classification presented® in ). Indeed, TM describes the
cyclic permutation orbifolds with respect to the outer automorphisms Z,, of the lattice
vertex algebras Ql(u/(l\)Km’p), where any ['g-RCFT u/(l\)Km’p is not a simple tensor product
of m copies of a I'y-RCFT.

Proposition 5. The theory TM, characterized as the Zp,-orbifold of the I'g-RCFT m-
component free bosons u(l)Kmp, has the following content:

The untwisted sector. The so called “P-P” untwisted sector of TM coincides with the

m-component free bosons u(l)Km L 505 it has 2pm + 1 h.w. representations with conformal

dimensions: )
- mb N
h,(1,1)) = o 1) hy, (5.1)
where b=20,...,2mp and corresponding characters:
X(b,(1,1)) (w]T) = Xp(w]|7) . (5.2)

The so called “P-A” untwisted sector of TM has 2pm + 1 h.w. representations, each
one with degeneracy m — 1 and conformal dimension:

~ mb?

ho.00Y) = Spm + 1) (5:3)

"In our case, the theory to which is applied the orbifold is a Ty-RCFT and m is a prime number, so we
apply T%S € I'p with j € {0,...,m — 1}.

8In particular, the m-reduction generates the vertex operators of our twisted sector, which can be
included into the class of twist fields defined in [@]
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where b=0,...,2mp, ¢ = 1,...,m — 1 and g is the generator of the discrete group Z,
The corresponding characters are:

- 2pm+1

Kb (g0 (@]7) = K7D (mawlms). (5.4)
The twisted sector. The so called “A-P” twisted sector of TM has m(2pm + 1) h.w
representations each one with degeneracy m — 1 and conformal dimension:

52 m? —1 f

his.fi) = =R 5.5
)= 22pm+ m | 24m | 2m’ (5:5)

where s =0,...,2mp, f=0,...,m—1andi=1,...,m—1. Here, the term (m2 — 1) /24m
takes into account the conformal dimension of the twist. The characters are:

1
m m

m—1 .
Xs.p(wlT) = o 3 e 2o 24)K(2’””+1)< |T+2‘7> : (5.6)
7=0

Proof. Here, we construct all the sectors of the Z,,-orbifold of u(l)Kmp showing that they
coincide with those written above in Proposition f.

The untwisted sector , of the orbifold is obtained introducing a new h.w. vector
|awt, (1,7)) and module Hél’ﬂ) for or_any element ™ € Z,, and any h.w. vector? |ap) and
module Hy in the native theory u(l)Km The new module H(1 ™ is defined selecting out
from the module Hy only the vectors that are invariant under the action of .
We observe that by the definition of g a vector |a) := @, |a(i)> is invariant under
the action of m = ¢*, i € {1,...,m — 1}, if and only if it is a diagonal vector, a =a t7.
Thus, the irreducible modules Hpt Kk, ,q of A(u(1))®™ which can participate to build
1 1
Hb( ) i€ {l,...,m— 1}, are only those with diagonal h.w. vector |abt+Km’pq>. By (§.29),
|abt+Km’pq> is diagonal if and only if q is diagonal, q :=q t”. So, the vectors in the module
1 7
Hb( 7 ), i €{1,...,m — 1}, are only the diagonal vectors in Hy g, _qer With g € Z.

Summarizing, the modules H, Igl’ﬂ) of the untwisted sector of the Z,,-orbifold of u/(l\)Km )
are defined in the following way:

gam For =« :'g0 = 1, the identity: @qEZm Hyt1k,, ,q = Hp (5.7)
b T ) Forr=gVie{l,...,m—1} : Dz HY) ’ '
where H, ISZ) is the submodule of Hy g o7 With only diagonal vectors.
The conformal weight of |agt, (1,7)) is:
~ mb?
h = _—_— 5.8
(b,(1,m)) 2(2pm_|_ 1) ( )
and the corresponding character is:
X(b,(1,m)) (w[T) = Trm (q(LO_%)eQ”mJ> . (5.9)

9We observe that the h.w. vectors |apg) of QL(U/(T)Km p) are invariant under the action of g.
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For 7 = g% = 1 (the Identity), it reads as:

X)) (w|T) =Trg, (Q(L‘)*%)e%m) = Xp(w|7), (5.10)
while for 7= g%, i € {1,...,m — 1}, it reads as:
- . Lo—2) 2miwJ) ._ Lo—2) 2miwJ
X(b,(1,7) (W) == TT’HIELW) <q( 0= 3f) 2miw ) = quZTTHé:qq) <C]( 0= 3}) g2miw ) . (5.11)

The definition of H égq) implies:

g (f 1) »
»q
_ 1 e2m’{% [(ab‘f’thRm,p)(Oéb‘f’thRm’p)T]+w det(Rm,p)(abJrthRm,p)t} (5 13)
n(m7) :
or more explicitly using ([.29), (f-33) and (E31)):
2
Tr (q(Lo—%)e%m'wJ) _ 1 62m‘{7—w(2mﬁ+1+q> +wm(2mp+1)<wb+l+q)}
& 1) ,
(5.14)
and finally:
Y _ 1o (2pm+1)
X(b,(1,m) (w]T) = K, (mw|mT). (5.15)

The identity (5.10) implies that the h.w. (s, (1, 1)) representation of the Zy,,-orbifold
of u(1)k,, coincides with the h.w. a, representation of u(1)g,  , that is the “P-P” sector

—

coincides with u(1)g 1 while the identity (5.15)) implies that there is a m — 1 degeneracy
in the other h.w. representations that define the “P-A” sector.

The twisted sector of the orbifold is generated by the action of the group I'y on the
untwisted sector. In particular, being U/(T)Km,p a ['g-RCF'T the twisted sector is generated
by the action of the group 'y on the “P-A” untwisted sector.

More precisely, by means of the modular transformation S from the characters X (1,4i))
(w|r) of the “P-A” untwisted sector we can generate the characters X (4i,1y)(w|T) =
KémeH)(w]%), ie{l,...,m— 1}, of the twisted sector.

Then, using the modular transformation T on the characters X, 4i,1))(w|7), the fol-
lowing basis in the twisted sector is obtained:

- 2pm+1 T+ 2j
X(b, (91,2 (WIT) = Ké pmtl) <w’T> ; (5.16)

where b € {0,...,2pm}, i€{l,...,m—1} and j € {0,...,m — 1}. Also these characters
are degenerate with respect to the index i € {1,...,m — 1}.

The invertibility of the equality in (.6) implies that the characters in (f.6) and (5.16))
simply define two different basis of the same twisted sector.

The reason why we have chosen the characters x(; 1) (w|7) as a basis is due to the fact
that they correspond to well defined h.w. representations, as it can be seen by looking at
the transformations of these characters under the elements of the modular subgroup I'y. O
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Proposition 6. The theory TM is a I'g-RCF'T.

Proof. We have to show that the characters of TM give a finite dimensional representation
of the modular group I'y.

—

The m-component free bosons u(l)Kmyp is a I')-RCFT. The modular transformations
of the corresponding characters are given in section J.

The modular transformations of the “P-A” untwisted and the “A-P” twisted characters
are derived using their definitions (5.4), (5.4) and the known modular transformations for
the free boson I'g-RCFT u/(T)2mp+1, given in appendix [B.

The modular transformations of the characters of the “P-A” untwisted sector.
The transformation T2

K9 (Wl +2) = &7 20 =5)) X (b,(1,9%)) (W]T), (5.17)

where (h(b7(17gi)) —m/ 24) is the modular anomaly of a h.w. representation of conformal

dimension h, (1 giy) in a I'g-RCFT with central charge ¢ = m.
The transformation S:

2pm m—1 2imbhp

5 w 1 e2mp+1
X(b,(1,9%)) <—| - —> =3 X (wIT), (5.18)
TT) S V2 F T

it brings the characters of the “P-A” untwisted sector X(b,(1,47)) into those of the “A-P”
twisted sector x(,, 1)

The modular transformations of the characters of the “A-P” twisted sector.
The transformation T2

X(s,f,i)(w‘T + 2) _ eiZW[Q(ﬁ(s’f’i)_%)]X(s,f,z’) (w’7)7 (5_19)

where <iL(S7 £i) — %) is the modular anomaly of a h.w. representation of conformal dimen-

sion h(, r4) in a I'e-RCFT with central charge ¢ = m.

The transformation S on the characters x( ;) is the most subtle to find. By the
definition (p.6) of the characters x(s 1) (w|7) it is clear that to find their transformation
under S we have to find the action of S on the characters K§2pm+1)(w| (T +25)/m) of

u(l)Qmp+1'

Lemma 5. The modular transformation S((w|7)) := (w/7| — 1/7) acts on the characters

o

K§2pm+1)(u}](7— +2j)/m) of the free boson T'g-RCFT u(1),,,,,,, in the following way:

Zpm 23:??1
K(2pm+1) l _ L K(me+1) 9
S( s (w’m)) bzg \/W b (mw’mT) (5 0)
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and

r+2i\ & T+ 2j*

m 2pm+1 .

S(K‘g2p ! (’U}‘ m )> = Z (A(mvpyzj))(s,b) Klg Pl <’U}‘ m ) VJ € (17 s, M= 1)7
b=0

(5.21)
where (A(m,p,Qj))(sw are the entries of the (2mp + 1) x (2mp + 1) matriz A, p2j) that
represents the action of the modular transformation Ay, 25 € T'e on the characters of

u(l)Zmp+1‘
in a univocal way by the conditions:

s(wTE2) = (ST gy (WD), G

The matriz A(m,25) € Uy and the integer number j* € (1,...,m—1) are defined

m m

for any fized j € (1,...,m —1).

Proof. of Lemma [ Relation (5.20) can be derived in the following way:

T mT

(w2 = (21 ) (5.23)

but now the right hand side can be seen as the transformation S’ on the new variables
(w' = muw|r" :=m7), that is S'((v'|7)) := (W' /7| = 1/7") = (w/7| — 1/mT).

Thus, one obtains:

§ (KPrme) (wl-)) = 8/ (K™ @) (5.24)
m
and, after using the modular transformation S of K§2p m+1) given in appendix [B, the

equation (p.20)) is reproduced.

To prove (p.2]]) we have to show that the 2x2 matrix A(m,2j) € T'g and the integer
number j* € (1,...,m — 1) exist and are unique, for any j fixed in 1,...,m — 1.

Indeed, given the matrix A, 2;) € I'g its representation A, ,2;) on the characters
Ks(2pm+1)(w|7') of the free boson I'g-RCFT u/(T)Qmp+1 follows by the modular transforma-

tions given in appendix B

By definition, the generic 2x2 matrix A = ( P ) € PSL(2,7Z) acts in the following
ros

way on (w|7):

w |pT +q
A = . 5.25
(twln) = (5| 21) (5.25)
Thus, expanding the right hand side of (5.22) it results:
w|=1+2j7\ _ w p(T+25%)/m+q (5.26)
T mr r(T+25%)/m+s|r(t+25%)/m+s )’ '
whose solution is:
r=m, p=2j, s=-2j5", (5.27)
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where j* and ¢ have to satisfy the equation:
(27) (25%) + gm = —1. (5.28)

The only thing to prove now is that the integer j* € (1,...,m — 1) and the odd integer ¢
exist and are unique, for any fixed j € (1,...,m —1).
We observe that the equation:

(24) (25") —bm =1 (5.29)

has one and only one solution, with j' nonzero integer number with minimal modulo and
b odd integer number, for any fixed j € (1,...,m —1).

Indeed, for the hypothesis m > 2 prime number and j € (1,...,m— 1), equation (5.29)
simply expresses that m and 2j are coprime numbers.

Finally, the integer «, such that j* = am — j' € (1,...,m — 1), exists and is unique
and, putting ¢ = b — 4ja odd integer, the pair j* and ¢ satisfy equation (f.25).

Thus, the matrix A, o5) is:

2j b—4ja
Am,2j) = ( m o ) (5.30)

The only thing left to prove now is that the matrices A, ;) are elements of I'y for
any j € (1,...,m—1).

We observe that det A(,, 25y = — [(27) (25°) + (b — 4ja) m] is 1 using equation (p.28),
80 A(m2j) € PSL(2,Z). The fact that A, 25 € Iy is now a direct consequence of the
characterization of Ty given in appendix [4.

In particular, by using ([A.) this matrix can be expressed in terms of the matrices T
and S as:

Am2) = S(arb) X Slazbe) X X bu); (5-31)

where u is an odd positive integer, (ap,bp) € ZXZ Vh € (1,...,u) and Sy, p) := T?e8T?.
O

The results of Lemma [] make possible to give the modular transformation S for the
characters x(,, s, of the “A-P” twisted sector, according to:

pm m m—1 B B
_ Z Z LS i@ (e~ 2)] (A(m,p,zj))(s y o= 2mi[(29) (e )~ )]
b=0 e=0 \ "' j=1 ’
)+ 5% (<) & () (5.52)
X(b,e,i) (W|T) + — X(b,(1,9%)) (W[T)- .
(bes2) m & V2Zmp + 1 | *B19)

The previous form of the transformations 72 and S (the generators of I'y) for the
characters of TM shows that it is a I'y-RCFT, so concluding the proof of Proposition ff. [
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6. TM as a ['y-RCFT extension of the fully degenerate WI(T(ZO

In all sectors of TM the residual ¢ = 1 free boson I'g-RCFT u( )m(2mp+1) €an be selected

out. This is well evidenced by the decomposition of the characters of TM in terms of those

of u(l)m(Qmp—f—l)’ which is the subject of the following Proposition.

Proposition 7. The characters of TM have the following decomposition in terms of the
characters Klgm(meH))(w]T) of u(1),2mp1)°

For the characters of the “P-P” untwisted sector:

m—1 /\
2pm—+1
Xo(w|T) = Z X; (QTrEpil)—;Jr)n)be(w’T)’ (6.1)
=0

forbe{0,...,2pm}.

For the characters of the “P-A” untwisted sector:

n(r)

KAL) 17 6.2
n(mT) b ( ’ ) ( )

(

X(b,(1,90)) (W[T) =

where b € {0,...,2pm} and i € {1,...,m — 1}.

For the characters of the “A-P” twisted sector:

m—1
2pm—+1
(.10 WT) = Y7 Nt oo (DK 2 (i), (6.3)
=0
where:
1 m-l _ 2w 2 77L7ﬁ 77(7—)
N(lf — E Z ( -] 24 2) (T+2j)7 (64)
7=0 N

for s €{0,...,2pm}, f€{0,...,m—1} andi € {1,...,m —1}.

Proof. The decomposition (B.1]) is derived in Proposition f]. The decomposition (b.9) is an
immediate consequence of the definitions of the characters X (1,giy)(w[7), qu) (w|T) and
of the ©-functions with characteristics.

Indeed:
K (mwlmr) i= - 50 2”’8“] (m (2pm + 1) wm (2pm + 1) 7) =

n(7) <L@ [m(Q%nIi—i—l)] (m (2pm~+1) w|m (2pm + 1)7)) = () Km0y
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The decomposition (p.3)) follows analogously, by using the following identity, for the
O-functions with characteristics:

< T+ 2j 2mi(2) 55 o
CHI w = J e 9m mqw|mqrt) , 6.6
: <q lo—— ) ; o | (mauwlmar) (6.6)
where A € (0,.,¢— 1) and j € (0,.,m — 1). dJ

It is worth noticing that in each sector (“P-P”, “P-A” and “A-P”) of TM the corre-

sponding cosets with respect to u(l)m(Qmp—f—l) define CFTs with central charge c = m — 1

whose h.w. representations can be defined in terms of those of the affine Lie algebra su(m);.
In particular, the characters of the h.w. representations of these cosets are expressed in
terms of those of su(m), but calculated for different specializations.

The decomposition (f.1]) shows that the characters of the coset y(“P-P”-TM)/
(1), (2mp+1) are those of the affine Lie algebra su(m); specialized at £= (zp + TK())

z=0

The decomposition (b-2) and the identity (B.I]) show that the characters of the coset
(“P-A”-TM) /u( )m( su(m)
p/m+Thq.

The decomposition (6.3), (b.4) and the identity (B.30) show that the characters of the
coset (“A-P”-TM) /u( )im(2mp+1) are written in terms of those of the affine Lie algebra

(2mp+1) are those of the affine Lie algebra su(m), specialized at £ =

sml specialized at € = pr/m + 7Ag times the function F.”" (m) (1), that account for the

twist
twist with conformal dimension (m? — 1) /24m.

Finally, the above observations together with the results of section [] make possible to
show:

Proposition 8. The theory TM is a U'y-RCFT extension of the fully degenerate Wl(igo,

as it follows by the decomposition of its characters in terms of those of the fully degenerate
(m) |
Wiioo:
For the characters of the “P-P” untwisted sector:

w‘T Z dsu (m) r(zjq) (U)’T), (67)
qu(m +)
where v(b,q) :=bt" R, + qR,, ,, with b € {0,...,2pm}.
For the characters of the “P-A” untwisted sector:
Xognlm) = > e(wa)Xyp g (w7, (6.8)
qez(m+)ND,,

where b € {0,...,2pm} and i € {1,...,m — 1}.
For the characters of the “A-P” twisted sector:

m—1m—1m-—1 P
X(s. 1) (WIT) = Fihy (7) Hisprag 2. "™ (L0 +20)) 3o o (wlr) ¢
j=0 1=0 a=0 qezim )

(6.9)
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where Z™ > =a mod m}, r(s,l,q) :=[(s+1—a)/m]t

+) . {q ez (m+) . (Z?l_ll 0
R, +aR,,, with q €Z{"

)
1 W 2” [2ls+l2 f+a(mfa)]

S 6.10
m 0,a ( )

J

Hs f1,0,5) =

s€{0,....2pm}, f€{0,..., m—1} andi € {1,...,m — 1}.

In (6.7), (B.8) and (6.9) A is always defined by q according to ({.35)

Proof. Equation (B.7) is the subject of Proposition . The proof of (B.8) is a consequence of

decomposition (B.2) and of the identities (B.1]) and (B.g). Indeed, the same considerations
of Proposition [ imply:
(6.11)

~ su(m 14 Wi
X(b,(1,g1)) (W]T) = XA( : (E) Xr(b,q)(w’T)’

qu(m,+)

that leads to (B.§) by (B.4).
Finally, the proof of (b.9) follows by the decomposition (p.2) and the Corollary [

Indeed, this last one implies:

m—1 e
mrT m 271i(25) (hx — 5= ) su(m), su(m p .
= Pt Y ) (£ 2 le). oa2)
m a=0
that becomes by (R.7):
n(r) S 2miCd) (g, — 5 ) ol p
(T2 = F () 7 R 7 Sow Y o (E (T+2j)> Xh(r)
A= a=0 AePLNQq
(6.13)

Now, following the same consideration developed in the proof of Proposition || and using

the decomposition ([.) it results:
m—1m—1m—1

= Ft(mst Z Z Z

X(s, i) (w|T)
j=0 1=0 a=0
1 gt 2mi(20) (Gt s, + it )
E 0,a €
S (L7 +2))) X g (l) (6.14)
XA m J Xr(svlvq) ’ ’
qez{™

where r(s,l,q) = [(s+1—a)/m]tTR,} » T altnp with q € Z{m), Equation (6.14)
coincides with (p.9) taking into account that

h,\ o— <Aa’ Aa + 2p> _ a’(m B a’) (6 15)
Ao ™ 2(m+1)  2m '
U
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7. Conclusions

m)
“+oo
The relevance of the last chiral algebra for the description of the Quantum Hall Fluid

In this paper, we found an RCFT extension of the fully degenerate Wl( chiral algebra.
plateaux has been underlined in [@ The TM model has been applied to the description
of such a phenomenon in [43, fl] and to other physical systems in [E4]. An interesting
property of such an RCFT is the possibility of defining different extensions of Wl(Tgo in
any sector of the orbifold. That relies deeply on the different multiplicities of the physical
vectors appearing in the spectrum of each sector. Moreover, we found that there is a one to
one correspondence between the CFTs with chiral symmetry su(m) Q) Wl(igo (9 and the
so called minimal models [2J]. They are simply two different sectors of)TM, which so gives

a consistent RCF'T containing fully degenerate representations of Wl(TOO and satisfying the
modular invariance constraint (i.e. it is a completion of the minimal model given in [PJ]).
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A. The I'y group

The group I'y denotes, according to the definition given in section 13.4 of the Kac’s
book [B7, the subgroup of the modular group PSL(2,Z) generated by T? and S. A
matrix representation of the generators 72 and S is:

T2:<1 2),5:<0 _1>. (A1)
0 1 1 0

I'y is the group of elements:

r9={<“ Z) € PSL(2,Z) : a+d, b+ c even, a+bodd}- (A-2)
C

Any element A of I'g can be represented as follows:
T? Va€eZ
A= A3
V(aj,bj)EZXZ,VjG(l,...,T) ( )

S(al,bl)xs(ag,bg)x e XS(ar,br) \V/T 6 N

where S(qp) = T?ST? . Thus, the characterization given for the subgroup I'y is a direct
consequence of the form of these matrices; indeed:

T2 — ( (1) 21“ ) (A.4)
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and

( 20+1 28 >
for r even
. 2y 2541
I Sws) = : (A.5)
j=1
2a 26+1 for r odd
2y +1 26

where «, 3, v, 0 are integers and depend on (aj,b;) and 7.

—

B. The I'y-RCFT u(1),

Let us recall that the quantized free boson field has the following expansion:

o(z,2) == o+ ¢ (2) + ¢ (2), (B.1)
where:

{(b(z) =dagIn (1/2) + i3 pez g0 apz""/k (B.2)

6 (2) :=iaoIn (1/2) +i Y pep oy a2 "/k

{ar} ez and {ay} ;e are two independent chiral Heisenberg algebra Ql(z@) and the zero-
mode ¢ is a conjugate operator to ag (ap):

[an, Gm] = N0pm, [An,Gm] =0, [Gn, Gm] = NOpm, [©0, am] = 100.m, [Y0,am] = 00 m -
(B.3)
The free boson u/(l\) with chiral algebra Ql(z@), generated by the modes of the conserved
current i0¢ (z), is a chiral CFT with stress energy tensor 7'(z) := (—1/2):0¢ (z) 0¢ (2):
and central charge ¢ = 1. This CFT has a one parameter family of h.w. vectors:

agla) = ala), apla) =0 for n >0, (B.4)

Tflq -a} o) with

n; >0, m; >0, ¢ > 0}. The module H, is the irreducible module of the Virasoro algebra
with h.w. @ and conformal dimension'® a?/2, as the expansions:

with corresponding (h.w.) irreducible positive energy module H,, := {a

1 1
L, = 3 Z p—m@m Yn € Z —{0}, Ly := Z GO + —a% (B.5)

2
MEZ meZ

—

in the modes of the Heisenberg algebra 2A(u(1)) imply.

The free boson u/(T) of course is not a rational CFT. RCFT extensions [[] of it are
defined compactifying the free boson field on a circle of rational square radius and corre-
spondingly introducing an extension of the Heisenberg algebra Ql(u/(l\)) More explicitly,
the compactification condition on the circle with radius r» = \/2p, p positive integer, is:

(2e*™ ze7 ™) = (2, Z) + 2mrm, (B.6)

1074, is, in fact, the lowest eigenvalue of Lo in the module H,.
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where m € Z is called winding number [R9]. The compactification condition has the only
effect to influence the zero-mode ag (ag) of the free boson field. In particular, to obtain
well defined vertex operators under the compactification condition, the possible eigenvalues
of ag are restricted to the following values «,, := n/r, n € Z. So, the h.w. vectors of the
compactified free boson u/(T) get reduced to:

ag |an) = aplag), arlan) =0 for r>0, Lo|ay) = hy|an), (B.7)

where h,, := a2 /2. The irreducible module corresponding to the h.w. vector |a,,) is denoted
by H,, and the corresponding character is:

1 .
qhn e27mwran’ (B8)

Try, <q(L0—%)627rin) _
n(7)

where J := rag is the conformal charge.

The chiral algebra ﬂ(@QP) extension of the Heisenberg algebra Ql(zXl\)) is defined by
adding to it the modes of the two chiral currents Fi(z) = e F V() I’;tp(z) are uniquely
characterized as the vertex operators with lowest nonzero conformal dimension satisfying
the requirements of well definition with respect to the compactification condition ([B.6)
(i.e. they have to be invariant under ¢ — ¢ + 27r) and of locality (i.e. integer conformal
dimension). The chiral algebra %(@zp) has r2 = 2p h.w. vectors |a;), those with oy = 1/
for [ € {0,.,2p — 1}. The corresponding irreducible modules are Hl(2p) = Duez Hituzp)
and so the corresponding characters are:

m . 1 € ; €
K (wlr) o= Tr o <Q(L0—ﬂ)ezmwj) = Lot 2r a4 (g g)
! U (T) UEZ

for I € {0,.,2p — 1}, which in terms of ©-functions with characteristics are written as:

l

K™ (wlr) = —6 | 2 | (2pu|2pr) . (B.10)

The chiral algebra ﬂ(@QP) defines an RCFT because its characters K. l(2p )(w|7') define a
2p-dimensional representation of the entire modular group PSL(2,Z). That immediately
follows by the modular transformations of the characters K l(2p ) (w]|T):

2p—1

2 w 1 1
S

K wir+1) = R ), K ()~ 1)

T T

2iml’l
K (wl).

(B.11)
We denote this RCFT simply with zXl\)zp.

Here, we want to define a class of ['g-RCFT extensions of the Heisenberg algebra
Ql(@) It can be done by admitting for the free boson CFT a compactification condition
with odd square radius r2 = p, p odd.

/rllhe same analysis as above holds with the only diﬁ‘ei(zlce that the chiral algebra

A(u(1),) giving the extension of the Heisenberg algebra 2(u(1)) is now defined by adding
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to it the modes of the two chiral currents F;,t(z) :=:e*WP2): | which are now locally
anticommuting Fermi fields with half integer (p/2) conformal dimensions.

The chiral algebra Ql(zXl\)p) has 72 = p h.w. vectors |a;), those with oy = I/r for
[ € {0,.,p — 1}. The corresponding irreducible modules are Hl(p) = Pz Hitup and so

the corresponding characters are:

U 2 TIW u
Kl(p)(w|7_) = TTHI(P) <q(Lo ) 27rsz) + 2 p( + )’ (B.12)
where J :=rag, | € {0,.,p — 1}, or in terms of O-functions:
n(r) |0

The chiral algebra Ql(u/(T)p) defines a I'y-RCFT because its characters K l(p ) (w|T) define a
p-dimensional representation of the modular subgroup I'y. Indeed, the modular transfor-
mation of Kl(p)(wh') are:

p)( | 2) z‘47r(é_2_i>K(P)( I7) K(P) < | > 1 pzl 2mz ).
w\T + = e D w|T), w, 1 _ 1 / w .
: T \/1_7 — l
(B.14)
We denote this I'y-RCFT simply as u( ) p odd.

Furthermore, we observe that the I'y-RCFT @p , p odd, coincides with the T'y-

projection of the ordinary RCFT u(1) 4 This is an immediate consequence of the relations
among the corresponding characters:

K (w]r) = K7 (w]r )+K(( _)H)(w|7'), (B.15)

for I € {0,.,p—1}. Finally, the operator content of ['y-RCFT u( ) does not coincide
with that of the ordinary RCF'T u( )4 4q- Indeed, the h.w. representations corresponding to

a/v/4q and (a + 2q) /+/4q, for a € {0,.,q — 1}, of zXl\)4q do not belong to u/(T)q.
References

[1] G. Cristofano, V. Marotta and G. Niccoli, Jain states on a torus: an unifying description,
JHEP 06 (2004) 056 [hep-th/040607§].

[2] V. Kac and A. Radul, Quasifinite highest weight modules over the Lie algebra of differential
operators on the circle, |Commun. Math. Phys. 157 (1993) 429 [hep-th/9308153].

[3] E. Frenkel, V. Kac, A. Radul and W.-Q. Wang, Wi and W(GL(N)) with central
charge-N, (Commun. Math. Phys. 170 (1995) 337 [hep-th/9405121].

[4] H. Awata, M. Fukuma, Y. Matsuo and S. Odake, Representation theory of the Wi algebra,
|Prog. Theor. Phys. Suppl. 118 (1995) 343.

[5] M.S. Virasoro, Subsidiary conditions and ghosts in dual resonance models,

(1970) 2933.

,31,


http://jhep.sissa.it/stdsearch?paper=06%282004%29056
http://arxiv.org/abs/hep-th/0406076
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C157%2C429
http://arxiv.org/abs/hep-th/9308153
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C170%2C337
http://arxiv.org/abs/hep-th/9405121
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPSA%2C118%2C343
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD1%2C2933
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD1%2C2933

[6]

[7]

8]

9]

A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in
two-dimensional Quantum Field Theory, [Nucl. Phys. B 241 (1984) 333; Infinite conformal
symmetry of critical fluctuations in two-dimensions, J. Stat, Phys. 34 (1984) 763.

V.G. Kac, Vertex algebras for beginners, AMS University Lecture Series, vol. 10, 1996. 2nd
edition, 1998.

V.G. Kac and I.T. Todorov, Affine orbifolds and rational conformal field theory extensions of
Wit oo, [Commun. Math. Phys. 190 (1996) 5564.

E.P. Verlinde, Fusion rules and modular transformations in 2-d conformal field theory,

Phys. B 300 (1988) 36(;

R. Dijkgraaf and E. Verlinde, Modular invariance and the fusion algebra, [Nucl. Phys. B

(Proc. Suppl.) (1988) 110.

[10]

J.L. Cardy, Operator content of two-dimensional conformally invariant theories, [Nucl. Phys

B 270 (1986) 186,

[11]

R. Dijkgraaf, C. Vafa, E.P. Verlinde and H.L. Verlinde, The operator algebra of orbifold
models, [Commun. Math. Phys. 123 (1989) 485,

G.W. Moore and N. Seiberg, Polynomial equations for rational conformal field theories,

Lett. B 212 (1988) 451; Naturality in conformal field theory, |Nucl. Phys. B 313 (1989) 16;

Lectures on RCFT, Proceedings of 1989 Banff Summer School, H.C. Lee ed., Plenum Press,
New York, 1990.

A. Klem and M.G. Schmidt, Orbifolds by cyclic permutations of tensor product Conformal
Field Theories, |[Phys. Lett. B 245 (1990) 53.

J. Fuchs, A. Klemm and M.G. Schmidt, Orbifolds by cyclic permutations in gepner type
superstrings and in the corresponding Calabi- Yau manifolds, |Ann. Phys. (NY) 214 (1992)

| 221

[15]

[16]

[17]

J. Fuchs, B. Schellekens and C. Schweigert, From Dynkin diagram symmetries to fized point
structures, [Commun. Math. Phys. 180 (1996) 39 |hep-th/9506135.

J. Fuchs, U. Ray and C. Schweigert, Some automorphisms of generalized Kac-Moody algebras,
J. Algebra 191 (1997) 512.

P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, |Phys. Rept. 223

(1993) 189 [hep-th/9210014].

18]

[19]

B. Kostant, On Macdonald’s n-function formula, the laplacian and generalized exponents,

Adv. Math. 20 (1976) 179.

J. Frohlich and A. Zee, Large scale physics of the quantum Hall fluid, [Nucl. Phys. B 364

(1991) 517;

J. Frohlich and E. Thiran, Integral quadratic forms, Kac-Moody algebras, and fractional
quantum Hall effect: an ADE-O classification, J. Stat. Phys. 76 (1994) 209;

J. Frohlich, T. Kerler, U.M. Studer and E.Thiran, Structure the set of imcompressible
quantum hall fluids, [Nucl. Phys. B 453 (1995) 670.

X.-G. Wen and A. Zee, Classification of Abelian quantum Hall states and matriz formulation
of topological fluids, |Phys. Rev. B 46 (1993) 229(;

X.-G. Wen, Topological orders and edge excitations in fractional quantum Hall states,

Adv. Phys. 44 (1995) 405.

,32,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB241%2C333
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C190%2C5565
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB300%2C360
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB300%2C360
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2CB5%2C110
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2CB5%2C110
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB270%2C186
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB270%2C186
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C123%2C485
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB212%2C451
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB212%2C451
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB313%2C16
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB245%2C53
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C214%2C221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C214%2C221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C180%2C39
http://arxiv.org/abs/hep-th/9506135
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C223%2C183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C223%2C183
http://arxiv.org/abs/hep-th/9210010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB364%2C517
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB364%2C517
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB453%2C670
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CB46%2C2290

[21] A. De Martino and R. Musto, Abelian hall fluids and edge states: a conformal field theory
approach, [Int. J. Mod. Phys. B 9 (1995) 2839

[22] A. Cappelli, C.A. Trugenberger and G.R. Zemba, Stable hierarchical quantum Hall fluids as
W1 4oo minimal models, [Nucl. Phys. B 488 (1995) 47();
A. Cappelli and G.R. Zemba, Modular invariant partition functions in the quantum Hall
effect, INucl. Phys. B 490 (1997) 595

[23] V.G. Kac and D.H. Peterson, Spin and wedge representations of infinite dimensional Lie
algebras and groups, Proc. Nat. Acad. USA 78 (1981) 3308.

[24] C.N. Pope, L.J. Romans and X. Shen, The complete structure of W, |Phys. Lett. B 234

(1990) 173; W, and the Racah- Wigner algebra, [Nucl. Phys. B 339 (1990) 191 A new higher

spin algebra and the lone star product, [Phys. Lett. B 242 (1990) 401

[25] 1. Bakas, The large N limit of extended conformal symmetries, [Phys. Lett. B 228 (1989) 57.

[26] V.A. Fateev and A.B. Zamolodchikov, Parafermionic currents in the two-dimensional
conformal quantum field theory and selfdual critical points in Z, invariant statistical systems,
|Sov. Phys. JETP 62 (1985) 21§;

V.A. Fateev and S.L. Lukyanov, The models of two-dimensional conformal quantum field
theory with Zn symmetry, [Int. J. Mod. Phys. A 3 (1988) 507;

G. Cristofano, G. Maiella and V. Marotta, A conformal field theory description of the paired
and parafermionic states in the quantum Hall effect, [Mod. Phys. Lett. A 15 (2000) 1679.

[27] V.G. Kac, Infinite-dimensional Lie algebras, 3rd edition, Cambridge University Press,
Cambridge, 1990.

[28] W. Fulton and J. Harris, Representation theory, Springer-Verlag, 1991.
[29] P. Di Francesco, P. Mathieu and D. Senechal Conformal field theories, Springer-Verlag, 1996.
[30] B. G. Wybourne, Classical Groups for Physicists, Wiley, New York, 1974.

[31] V.G. Kac and D.H. Peterson, Infinite dimensional Lie algebras, theta functions and modular
forms, Adv. Math. 53 (1984) 125.

[32] V. Marotta, Vertex operator realization and representations of hyperbolic Kac-Moody algebra
Al . Phys. A 26 (1993) 1161; Stress tensor for parafermions by the generalized Frenkel-Kac
construction of affine algebras, Mod. Phys. Lett. A 13 (1998) 853; W (K) structure of
generalized Frenkel-Kac construction for SU(2)-level K Kac-Moody algebra,

527 (1998) 717 [hep-th/9702143.

[33] L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds. 2, |Nucl. Phys. B 274

(1986) 284

[34] C. Vafa, Modular invariance and discrete torsion on orbifolds, [Nucl. Phys. B 273 (1986) 599.

[35] L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The conformal field theory of
orbifolds, [INucl. Phys. B 282 (1987) 13

[36] S. Hamidi and C. Vafa, Interactions on orbifolds, [Nucl. Phys. B 279 (1987) 464.

[37] R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric
products and second quantized strings, |Commun. Math. Phys. 185 (1997) 197
[hep-th/9608094].

,33,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CB9%2C2839
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB488%2C470
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB490%2C595
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB236%2C173
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB236%2C173
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB339%2C191
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB242%2C401
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB228%2C57
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C62%2C215
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA3%2C507
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA15%2C1679
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA26%2C1161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA13%2C853
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB527%2C717
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB527%2C717
http://arxiv.org/abs/hep-th/9702143
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB274%2C285
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB274%2C285
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB273%2C592
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB282%2C13
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB279%2C465
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C185%2C197
http://arxiv.org/abs/hep-th/9608096

[38]

L. Borisov, M.B. Halpern and C. Schweigert, Systematic approach to cyclic orbifolds,

Mod. Phys. A 13 (1998) 125 [hep-th/9701061].

[39]

P. Bantay, Characters and modular properties of permutation orbifolds, |Phys. Lett. B 419

(1998) 174 [hep-th/970812(]; Permutation orbifolds |Nucl. Phys. B 633 (2002) 365.

[40]

[41]

[42]

C. Dong, H. Li and G. Mason, Twisted representations of vertex operator algebras,
Math. Annal. 310 (1998) 571.

K. Barron, C. Dong and G. Mason, Twisted sectors for tensor product vertex operator
algebras associated to permutation groups, [Commun. Math. Phys. 227 (2002) 349

G. Cristofano, G. Maiella and V. Marotta, A twisted conformal field theory description of the
quantum hall effect, |Mod. Phys. Lett. A 15 (2000) 547 [cond-mat/9912287]; A conformal
field theory description of the paired and parafermionic states in the quantum hall effect,
IMod. Phys. Lett. A 15 (2000) 1679;

G. Cristofano, G. Maiella, V. Marotta and G. Niccoli, Paired states on a torus,

B 641 (2002) 547 [cond-mat/020457§].

B. Bakalov and V.G. Kagc, in Proc. V Internat. Workshop “Lie theory and its applications in
physics”, Varna, June 2003, H.D. Doebner and V.K. Dobrev eds., World Scientific,
Singapore, 2004, math.QA/040231§.

L. Cappiello, G. Cristofano, G. Maiella and V. Marotta, Tunnelling effects in a brane system
and quantum hall physics, [Mod. Phys. Lett. A 17 (2002) 1281 [hep-th/0101033];

G. Cristofano, V. Marotta and A. Naddeo, Twisted CFT and bilayer quantum hall systems in
the presence of an impurity, [Phys. Lett. B 571 (2003) 25(] [hep-th/021231§]; A twisted
conformal field theory description of dissipative quantum mechanics, [Nucl. Phys. B 679

(2004) 621 [hep-th/0306219[;

G. Cristofano, V. Marotta, A. Naddeo and G. Niccoli, A two-dimensional model for magnetic
flux fractionalization in high T, superconductors, Eur. Phys. J. B49 (2006) 83
[hep-th/0404048).

J.D.Buchholtz, G. Mack and I.T. Todorov, The current algebra on the circle as a germ of
local field theories, [Nucl. Phys. 5B (Proc. Suppl.) (1988) 2d.

,34,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA13%2C125
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA13%2C125
http://arxiv.org/abs/hep-th/9701061
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB419%2C175
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB419%2C175
http://arxiv.org/abs/hep-th/9708120
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB633%2C365
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C227%2C349
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA15%2C547
http://arxiv.org/abs/cond-mat/9912287
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA15%2C1679
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB641%2C547
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB641%2C547
http://arxiv.org/abs/cond-mat/0204575
http://arxiv.org/abs/math.QA/0402315
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA17%2C1281
http://arxiv.org/abs/hep-th/0101033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB571%2C250
http://arxiv.org/abs/hep-th/0212318
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB679%2C621
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB679%2C621
http://arxiv.org/abs/hep-th/0306219
http://arxiv.org/abs/hep-th/0404048
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C5B%2C20

